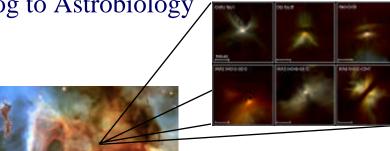
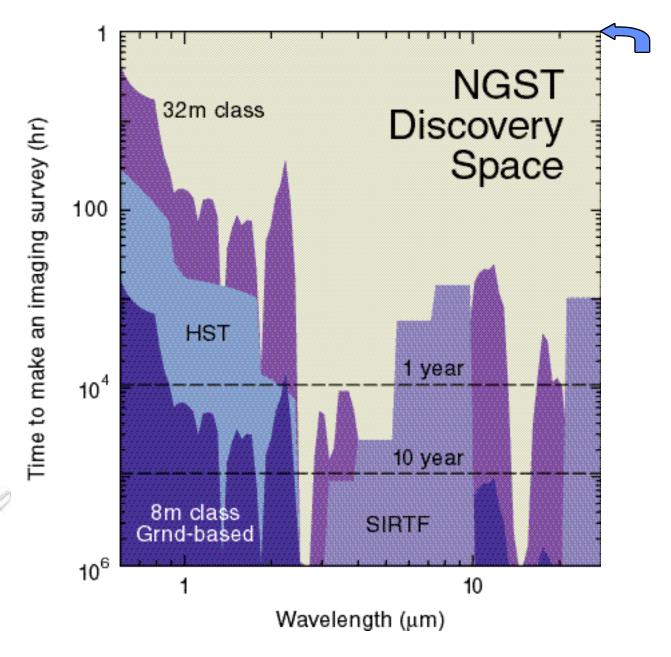


Next Generation Space Telescope (NGST)


Presented by

Eric Smith
Deputy Project Scientist

Key NGST Science Objectives


- Detect and Characterize the First Stars and Galaxies to Form after the Big Bang
 - "First Light" Machine
- Measure the Complete Formation Processes of Galaxies and the Creation of Heavy Elements
 - Visiting a Time When Galaxies Were Young
- Study the Details of Star and Planet
 Formation in our Galaxy

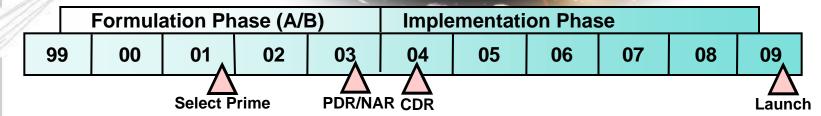
Prolog to Astrobiology /

Discovery Space for NGST

NGST

d o


Tele


Space

Generation

NGST at a Glance

- 8m Primary Mirror
- 0.6-10+ µm Wavelength Range
- 5 year Mission Life (10-year goal)
- Passively Cooled to <50K

Quantifying Science Goals: The DRM

- The Design Reference Mission (DRM) was created by the Ad hoc Science Working Group
- DRM contains the "Dressler Report" science
- DRM does not preempt proposal process
- Comprised of 23 large, critical science programs that could be carried out in ~2.5 years
- 7 Core Programs
 - 1: Formation & Evolution of Galaxies Imaging
 - 2: Formation & Evolution of Galaxies Spectroscopy
 - 3: Mapping Dark Matter
 - 4: Search for Reionization Epoch
 - 5: Measuring Cosmological Parameters
 - 6: Formation & Evolution of Galaxies Obscured Stars & AGN
 - 7: Physics of Star Formation: Protostars

JGST Next Gen

Science Goals Drive Observatory Performance

- 1: 2 μm Diffraction Limited Imaging, Large FOV, 8m Sensitivity, 0.6-5 μm
- 2: 1-5 μm NIR Multiplexed Spectroscopy, *R*=100-3000; 5-10 μm Spectroscopy, *R*=3000
- 3: Very Wide FOV; Stable Point-Spread Function
- 4: Very Sensitive NIR Spectroscopy, *R*=100-300
- 5: Ability to follow fields over months
- 6: MIR (10-28+ μ m) Imaging/Spectroscopy, R=300
- 7: MIR (10-28+ μ m) Imaging/Spectroscopy, R=3000+

Recommended Instruments for NGST Goals

- 4' x 4' NIR Camera (8k x 8k pixels)
 - Nyquist sampled at 2 μ m, 0.6-5 μ m, R~100 grism mode
 - First light, galaxy formation, dark matter, supernovae, young stars, Kuiper Belt Objects (KBO), stellar populations (1, 3, 5, 6)
- 3' x 3' NIR *R*~1000 Multi-Object Spectrograph
 - Simultaneous source spectra(100), 1-5 μm
 - Gal formation/diagnostics (clustering, abun., star form., kinematics), Active Galactic Nuclei, young stellar clusters (Initial Mass Function (IMF)/stellar populations) (2, 4, 5, 7)
- 2' x 2' Mid IR Camera/R~1500 Spectrograph
 - Nyquist sampled at ~10 μm, 5-28 μm, grisms & slit
 - Physics of old stars at high redshift, $z\sim5$ obscured star form. & Active Galactic Nuclei to $z\sim5$, PAHs to $z\sim5$, Ha to $z\sim15$, cool stellar IMF, protostars and disks, KBO sizes, comets (1, 6, 7)

(Core science program numbers in **red**)

CST

Desirable 4th Instrument Capabilities

- NIR *R*=3000-5000 PSF-sampled spectrograph
 - 0.1" angular resolution, ~2" x 2" FOV
 - 2d for single, extended object spectroscopy
- 0.6 1 µm camera (sampling diffraction spike)
 - ~0.01" angular resolution, 1' x 1' FOV
 - (Note-- assumes NIRCAM has 0.6 µm capability)
 - Stellar pops/White Dwarf cooling curve, circumstellar disks, high-z gal. Morphology
- MIR *R*=3000-5000 PSF-sampled spectrograph
 - 0.3" angular resolution, 2" x 2" FOV, 5-28.3 µm
 - Instead of *R*∼1500 add-on spectrograph to MIR camera

NGST Key Technologies

- Technologies must be sufficiently mature by Non-Advocate Review (Technology Readiness Level – **TRL** 6)
- The following have been identified as key technologies:

	Affected Science	TRL		% Technology
Technology Product	Programs	Level	\$(M)	Budget
Lightweight Cryogenic Primary Mirro	r 1-7	3-4	29.0	37%
Large Format, Low Noise IR detector	<mark>s</mark> 1-7	4	15.0	19%
Wavefront Sensing & Control Method	ology 1-7	4	11.4	15%
MEMS Spectroscopic Slit Assemblies	2	3-4	11.2	14%
Low Vibration, Long Life Cryo-coole	rs 6, 7	4	5.0	6%
Lightweight Sunshield	1-7	3	3.8	5%
Cryogenic Actuators	1-7	4-5	0.9	1%
Cryogenic Deformable Mirror	1, 3, 5	2-3	0.9	1%
Precision Deployable Structures	1-7	4-5	0.5	<1%
Vibration Control Methodology	1-7	5-6	0.5	<1%

Items in *red* are critical path technologies that strongly influenced decision to replan schedule

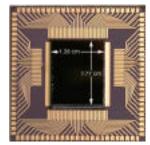
Lightweight Cryogenic Optics (TRL 3-4)

- Objective/Requirements
 - 8m deployable primary, <15 kg/m² areal density,
 2μm diffraction limit, T<40K
- Technology Development Efforts
 - NGST Mirror System Demonstrator (NMSD)
 - COI/REOSC (1.5m glass/composite)
 - University of Arizona (2m glass shell/composite)
 - Subscale Demonstrators
 - Ball/Tinsley (0.5m beryllium)
 - IABG (0.5m C-SiC)
 - Advanced Mirror System Demonstrator (AMSD)
 - Phase 1 Contracts completed
 - Raytheon, Kodak, Ball, COI, U. of Arizona
 - Phase 2 Contractors selected
 - Test facility ready at MSFC

TPF also investing in AMSD Issues

- To date progress slower than anticipated
 - Launch deferred

IR Detectors & Focal Plane Arrays (TRL 4)


• <u>Objective:</u> Develop & demonstrate very **large format** IR arrays, with sensitivity for **background-limited** observations

Sensitivity Challenges

Near-IR: Low Noise, 90% QE <0.02e/sec dark current <15 e/sec read noise Pursuing InSb and 5µm HgCdTe

Mid-IR: Low Noise, 80% QE <1e/sec dark current <15 e/sec read noise Pursuing Si:As, Si:Ga, & 10µm HgCdTe

2 k x 2 k HgCdTe FPA

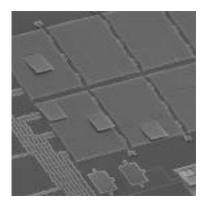
412x512 Si:As array

Size, Producibility Challenges

Chip Format: Develop 1KX1K & 2KX2K

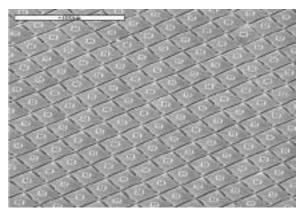
Tiling Chips: make 16Mpixel FPAs

Manufacturing: yield, low-cost, high-volume


4 k x 4 k working mockup

Well-characterized technology options for instrument proposals in 2002/3

Micromirror Test Arrays for NGST (TRL 3-4)


- Objective: Develop technology to allow selection of >100 targets per/FOV for spectroscopy
- Affected Science Programs (2, 4, 6)
- Pursuing both micromirror and microslit selector technologies
- Major focus for NRA 2 funding

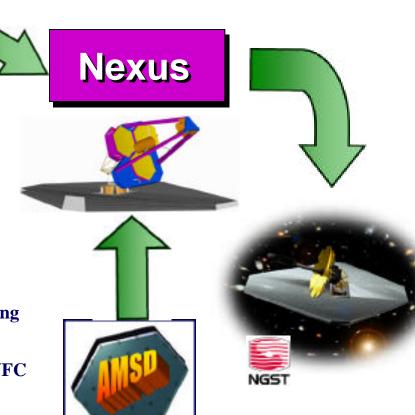
 Issue: Riskiest instrument technology, offramps to be pursued in NRA 2 also

Sandia National Lab.

(Both designs feature 100 µm mirror elements)

GSFC 256x256 array

Wavefront Sensing & Control (TRL 4)


- <u>Objective</u>: develop models and algorithms for controlling segmented optics on testbeds for use in Nexus and ultimately NGST
- Affected Science Programs (1-7)

NGST WFC Testbeds

- Wavefront error
- Segment error
- Dispersed fringe sensing for coarse phasing
- Actuated segments
- CCD Camera for wavefront sensing
- Deformable quaterary mirror for fine WFC
- Future additions
 - Deformable segments
 - Fast steering mirror for jitter control

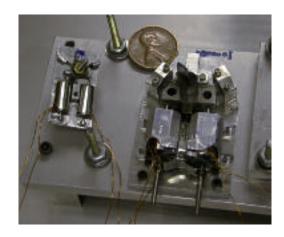
Vext Generation Space Telescope

NGST Cryogenic Actuators (TRL 4-5)

- Objective: Produce actuators to adjust Primary Mirror shape and segment phase
- Affected Science Programs (1-7)

Critical Requirements:

- 30K operation
- 20nm resolution
- 6mm stroke


Al Hatheway-developed Actuator

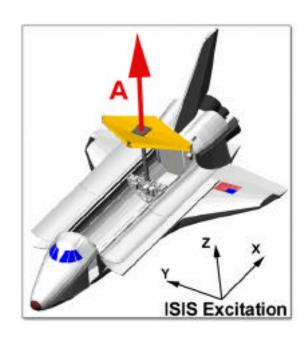
- · Cryo tested at JPL
- 10mm stroke
- 8nm resolution
- Electromagnetic stepper motor/gearbox design by Schaeffer

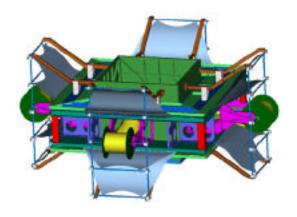
Langley-developed Actuator

- Being tested
- 10mm stroke
- 13nm resolution
- Weighs 58gm
- Uses a Smoothy motor/gearbox

U/Az Impact-Driven Figure-Control Actuator

Success


Technology Development by Govt. Concluded; Transferred to Industry


ISIS Sunshield Validation

- Validate key aspects of the deployment of a large, lightweight (gossamer) structure for NGST
 - Membrane handling
 - On-orbit dynamics and structural properties
 - Rigidization of struts
- Full scale thermal vac test at GSFC
- Scheduled launch: October, 2001
 - STS 112
 - 1/3rd scale

May workshop with industry Issue

 Assessing Feasibility of STS107 Launch (March 2001)

How Nexus Benefits NGST

It is the logical link between technology developments...

...management and process...

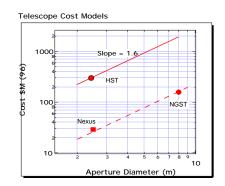
• Cost Schedule Teaming

...and the flight of NGST.

NASA concepts for

Nexus and NGST shown to same scale

A NASA Origins Mission


In conjunction with OTA & Sunshield ground tests, it represents the lowest cost/risk systems verification approach for a large, ultralightweight telescope

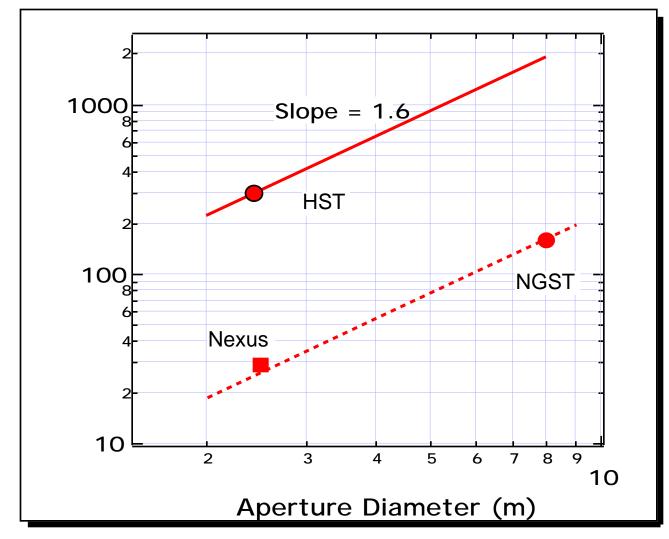
CD.

[GST

Nexus Mitigates NGST Cost & Risk

- Tests New Large Optics Cost Curve
- Operations & Algorithms
 - Observing efficiency 80%
 - Loss of 10% efficiency = loss of \$50M in Observations

- I & T Methodology
 - Model Validation for Non-linear Effects in Zero-g Environment
 - Fabrication Techniques & Reduced Schedule
- Permits \$-for-\$ savings in NGST C/D costs by flying full-scale prototype hardware & software for NGST
 - Mirrors
 - Reaction structure
 - Actuators
 - Sunshield (1/2 scale)
 - NIRCAM SCA and C&DH
 - Wavefront Sensing and Control Algorithms
- Pathfinder to Normal Processes for Future Large Space Telescopes

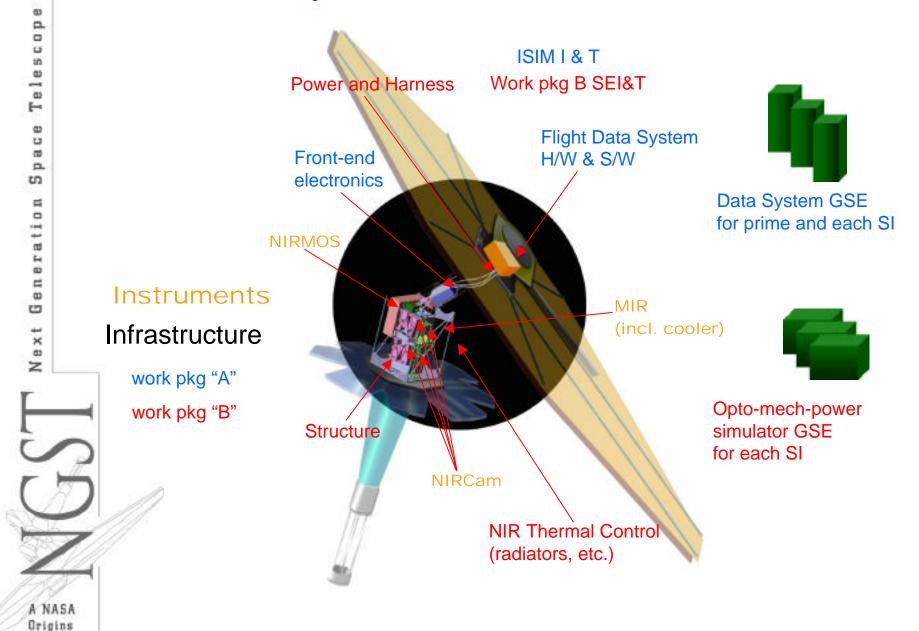

O

A NASA

Mission

Nexus Mitigates NGST Cost & Risk (cont'd)

Telescope Cost Models



Mission

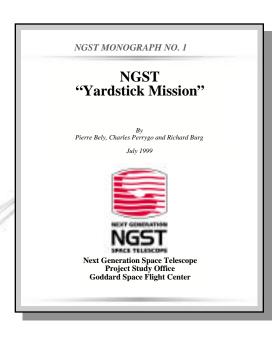
NGST - 18

ISIM is the Payload of NGST

Mission

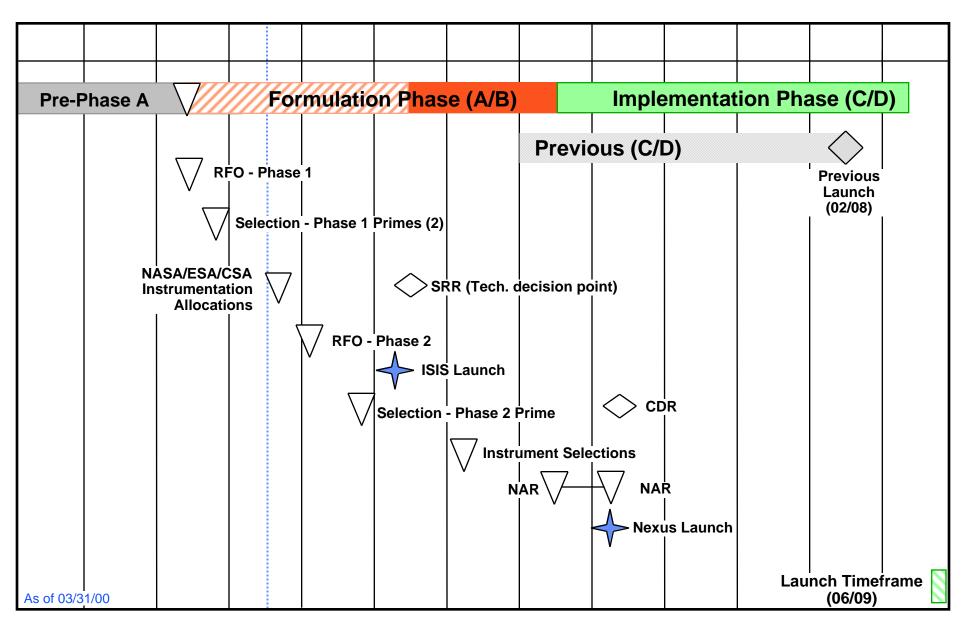
Major Accomplishments

- Contracted with TRW and Lockheed for Phase 1 Studies
 - Blue Dot Consortium was debriefed
- Awarded AMSD contracts to Ball, Raytheon, and Kodak
- Completion of the Ball SBMD mirror technology program
 - NMSD/COI mirror fab complete and mirror is in test
- ASWG and astronomical community consented to a preferred, prioritized instrument suite



p.

NGST Monograph Series


- Details of Government Team "Yardstick" NGST
 - Documents design philosophy/decisions
 - Transitions team role from leading to collaborating with Primes
- Similar to Keck Monograph Series
- Available online
 - http://www.ngst.nasa.gov/project/text/monographs.html

9 volumes

- 1. General Design Overview
- 2. Stray Light Analysis
- 3. Implications of MIR Capability
- 4. I & T Strawman Plan
- 5. System Requirements
- 6. Performance Analysis
- 7. Optical Quality Guidelines
- 8. Radiation Environment for NGST
- 9. Optical System Testing Strawman Plan

NGST Top Level Observatory Schedule

[GST

Launch Replanned for 2009 Because:

- Technology maturation rates slower than expected
 - Mirrors
 - Detectors
- Budget profile did not support instrument technology development
 - Multi-Object Spectrograph aperture selector devices
 - Cryocoolers
- Nexus pathfinder flight never properly phased with the AMSD program
 - AMSD pilot line
 - Full scale segment EMU
- Phase C/D duration, particularly I & T aspects, too aggressive at 54 months
- Overall, too success-oriented (no slack)

GST Next 6.

A NASA

Mission


NGST Outreach

- Science Meetings
 - Atlanta AAS Instrument Capabilities presentation (1/00)
 - Detector Workshop (4/99)
- Hyannis Meeting (9/99)
 - ~250 participants from industry & academia
 - Proceedings published this summer by ASP
 - Final tech infusion meeting for NGST
- NGST.Site development begun
 - Public Outreach website similar to HST.Site

Hyannis meeting

Report Card for Last Year – Accomplishment Metrics

Last Year's Goals	Status to Date	Comments
• Technology Development Milestones		
- Cryogenic Actuator Prototype	- 3 prototypes successfully demonstrated adequate cryogenic performance	 All 3 prototypes will be manufactured for use in NMSD, AMSD mirrors
- DCATT Phase 1 Testbed	- Faulty mirror mount assembly precluded timely convergence of final figuring and polishing of the 1 meter segmented aluminum overcoated with Nickel primary mirror. Phase 1 was terminated. Work continues on the highly successful Phase 0 hardware	- Mirror mount was retrofitted with supports that permitted polishing to resume. Current OPD is 7, and convergence is 0.7 likely by June '00
- NRA #2 Awards	- NRA #2 proposal received on May 5, selection in June, 2000	
- Technology Readiness Monograph	- Astronomical Society of the Pacific, volume 207, " NGST Science and Technology Exposition"	- Publication date is summer, 2000
- Advanced Mirror Systems Demonstrator	- Phase 1 complete. Phase 2 downselect complete, 3 firms selected	- Four prototype NGST active optics to be complete in summer, 2002

Report Card for Last Year – Accomplishment Metrics (cont'd)

Last Year's Goals	Status to Date	Comments
• Architecture Studies		
- Phase 1 Studies	- 2 strong Phase A/B study contractors competing since July, 1999	- Phase 2 downselect in July '01
- NGST Monograph Series	- 9 monographs complete and in publication (online now)	- Complete documentation of the Yardstick studies of 1996- 1998
- Operations Concept Study	- ST ScI has released monographs on an NGST operations concept and an analysis of the cost of multiple instrument modes	- Monographs are on the Web
- International Allocation Process	- Tripartite planning on a Paris-May 25 agreement between Weiler/Bonnet	- Details to be worked out by March, 2001

Goals for the Next Year

• <u>Programmatic</u>

- 1. Phase 2 Downselect
- 2. Awards for NRA 2 for Instrument Technology

Technology

- 1. Advanced Mirror Systems Demonstrator (AMSD) Phase 2
- 2. NGST Mirror Systems
 Demonstrator (NMSD) Phase
 2 testing complete
- 3. Focal Plane Development SCA
- 4. Wavefront Sensing & Control Testbeds Completion

Science

1. Revitalize Science advocacy group (ISWG)

• Systems Studies

- 1. ISIM Delta Formulation Studies/Cost Estimates
- 2. OTA Cost Model Development
- 3. Cryocooler vs. Cryostat Trade Study
- 4. International Agreements and Phase A/B Studies

Pathfinder Flights

ISIS Flight Experiment

Nexus: Formulation/early Implementation

Three Points to Remember about NGST

- Astronomical community has agreed to a limited set of highly focused science instrument capabilities
- Progress along technology roadmap compatible with successful demonstration by Non-advocate Review
- Successful rephasing of funds enables Nexus program to create dollar-for-dollar savings opportunities in NGST phase C/D costs

Want to Know More About NGST, Visit Our Website at http://www.ngst.nasa.gov

